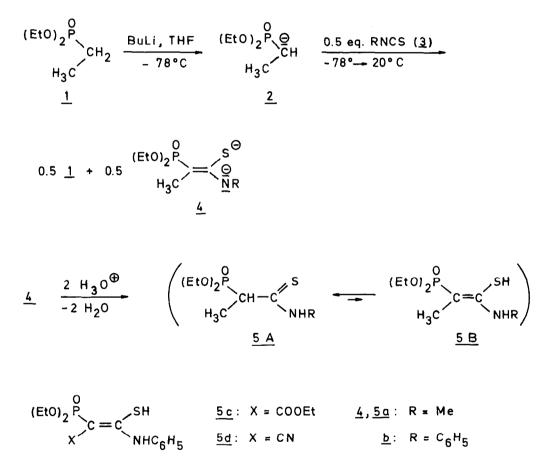
α,β -unsaturated thioamides via wittig-horner olefination


Ernst Schaumann* and Stefan Fittkau Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, W. Germany

Summary - Reaction of phosphonate carbanions <u>6</u> with aromatic or α , β -unsaturated aldehydes <u>7</u> provides facile access to the title compounds <u>8</u>.

Because of its versatility, the thioamide group plays an important role in synthetic methodology¹. α,β -Unsaturated secondary thioamides are of particular interest as Michael acceptors²; after N-silylation, they add a broad range of organometallics in a 1,4-fashion² thus surpassing the corresponding amides³. Unfortunately, the conventional method for thioamide synthesis, i. e. thionation of the corresponding amide by the action of some phosphorus sulfide, fails for α,β -unsaturated secondary thioamides due to polymerization^{2,4} or in situ addition of hydrogen sulfide⁵. A possible synthesis of the title compounds involves addition of isothiocyanates to olefinic organometallics or to allylmagnesium bromide followed by a base-catalyzed shift of the C=C bond². However, these approaches are limited to examples with alkyl groups on the C=C bond. Another route to α -unsubstituted α,β -unsaturated secondary thioamides is via a Wittig reaction⁶. Finally, insertion of alkynyl silyl sulfides into C=N bonds provides access to unsaturated thioamides⁷.

Considering the broad applicability of the Wittig-Horner olefination⁸, α -phosphono thioamides <u>5</u> should be precursors of the title compounds <u>8</u>. Thioamides <u>5a,b</u> can be obtained via addition of carbanions <u>2</u> to methyl (<u>3a</u>) or phenyl isothiocyanate (<u>3b</u>). Since in the primary adduct the α -position is more acidic than in <u>1</u>, a dianion <u>4</u> results and only 50% of <u>2</u> can be converted into the desired addition product. However, due to their acidity, compounds <u>5a,b</u> can be easily separated from starting-material <u>1</u> by extraction of the reaction mixture with aqueous sodium hydroxide. Thus, based on converted <u>1</u>, good yields of <u>5a</u>⁹ [50%; oil; ir (film) 3220 (NH), 1240-1200 (P=0), 1060-1000, 950 (POC), 820, 790 cm⁻¹; ¹H-nmr (CDCl₃) 6 = 1.33 (t, J = 7 Hz; 6H, POCMe), 1.54 (dd, ³J_{HP} = 20 Hz, ³J_{HH} = 7 Hz; 3H, PCMe), 3.16 (dd, ³J = 5 Hz, ⁵J_{HP} = 2 Hz; 3H, NMe), 3.53 (dq, ³J_{HH} = 7 Hz, ²J_{HP} = 21 Hz; 1H, PCH), 3.8-4.4 ppm (m; 4H, POCH₂)] and <u>5b</u>⁹ [87%; m.p. 104-106^oC (ethyl acetate/petroleum ether); ir (KBr) 3350/3300 (NH), 1210/1190 (P=0), 1040-1010, 960 cm⁻¹ (POC); ¹H nmr (CDCl₃) 1.30 (t, ³J_{HH} = 7 Hz; 6H, POCMe), 1.63 (dd, ³J_{HP} = 18 Hz, ³J_{HH} = 7.4 Hz; 3H,

PCMe), 3.65 (dq, ${}^{2}J_{HP} = 21.6 \text{ Hz}$, ${}^{3}J_{HH} = 7.4 \text{ Hz}$; 1H, PCH), 3.5-4.5 (m; 4H, POCH₂), 7.1-8.0 (m; 10H, ary1-H), 11.1 ppm (broad s; 1H, NH); ${}^{13}C$ -nmr (CDCl₃) $\delta = 198.0 (d, {}^{2}J_{CP} = 7 \text{ Hz}$; C=S), 139.3, 129.7, 126.5, 123.2 (ary1-C), 63.7-62.9 (OCH₂), 49.6 (d, ${}^{1}J_{CP} = 126 \text{ Hz}$; P-C), 16.5-15.8 ppm (POC<u>C</u>, PC<u>C</u>)] are obtained. The spectroscopic evidence shows that, within instrumental limitations, <u>5a</u>, <u>b</u> exist in the thioamide form <u>5A</u> exclusively and not in the ketene S,N-acetal form <u>5B</u>. This is in contrast to the previously reported compounds <u>5c</u>, <u>d</u>, where the electron-withdrawing groups X increase CH acidity and for which, consequently, the configuration <u>B</u> of heterosubstituted vinyl phosphonates has been established¹⁰.

Addition of an equimolar amount of sodium hydride in THF at $20^{\circ}C$ to thioamides 5a-d results in hydrogen evolution indicating formation of anions <u>6</u>. Starting from <u>5c</u>,<u>d</u>, no olefination of added benzaldehyde could be achieved (8 h, $65^{\circ}C$). However, anions <u>5a</u>,<u>b</u> give a smooth reaction with aromatic aldehydes or cinnamaldehyde at room temperature to yield yellow α,β -unsaturated secondary thioamides <u>8</u> (Table). As expected, benzaldehyde gives a better yield than more electron-rich aldehydes. In contrast to these results, no reaction could be achieved with aliphatic aldehydes ($\frac{7}{2}$ with R^2 = iPr or Bu) or with acetophenone. Thus, the method is limited to the synthesis of thioamides with aromatic or unsaturated groups R^2 , but it nicely complements the reported approach² to compounds 8 with aliphatic groups R^2 .

Table. Yields and characteristic data for the new unsaturated thioamides $\underline{8}^9$

	R^1								
			[8]						
		for ^H nmr measurements CDCl ₃)							
<u> </u>		·····			v _{NH}	vc=c	^v thioamide	^δ =CCH ₃	(⁴ J _{HH} [Hz])
<u>8a</u>	Ph	Ph	89	70(dec.)	3200	1590	1520, 1490	2.23	(1.2)
<u>8b</u>	Me	Ph	40	66	3300	1620	1525	2.23	(1.2)
<u>8c</u>	Ph	4-MeC ₆ H ₄	47	103-104	3150	1590	1525, 1490	2.25	(0.9)
<u>8d</u>	Me	4-MeC ₆ H ₄	39	oil	3270		1520, 1505	2.18	(1.3)
		• •						2.05	(1.5)
<u>8e</u>	Ph	4-MeOC ₆ H ₄	33	87-88	3160	1600	1505, 1495	2.23	(1.2)
<u>8f</u>		2,4-(MeO) ₂ C ₆ H			3250	1600	1500	2.28	(1.5)
<u>8g</u>	Ph	$4 - \text{Me}_2 \text{NC}_6 \text{H}_4$		70-71(dec.)		1600	1520, 1495	2.36	(1.1)
<u>8h</u>	Ph		82	81	3200	1590	1490	2.28	(1.0)
<u>8i</u>	Ph	Ph-CH=CH-	48	121	3300	1605 1585	1500, 1495	2.21	(?)
$\frac{5a-d}{20^{\circ}C} \xrightarrow{\text{NaH}, \text{THF}}_{\text{H}_{3}C} \xrightarrow{\text{(EtO)}_{2}P} \bigoplus_{\overline{C}-C} \xrightarrow{\text{S}}_{\text{NHR}^{1}} \xrightarrow{\text{R}^{2}CHO(\underline{7}), 18h, 20^{\circ}C}_{-(EtO)_{2}PO_{2}Na}$									
			20°C H ₃ C		/ · ·	NHR	– (EtO) ₂ PO ₂ Na		
				Ū.	<u>6</u> for <u>5a</u> , <u>b</u>				
R^2 CH_3 <u>8</u> <u>8</u> : R^1 , R^2 see Table									

Products <u>8</u> are isolated as pure diastereomers. Distinction between the <u>E/2</u> isomers should be possible based on the position of the <u>HC=C</u> signal in the ¹H nmr spectrum. However, a corresponding signal can only be detected in the spectrum of <u>8h</u> (δ = 7.01 ppm); in the spectra of <u>8a-g,i</u> the resonance is obscured by the absorption of the aromatic protons. A range of δ = 6.7-8.0 ppm seems reasonable for <u>E-8</u>. These values are comparable to the signal positions in α,β -unsaturated <u>E</u>-esters, whereas the olefinic proton in the <u>Z</u>-esters absorbs in the range of δ = 5.35-5.85 ppm¹¹. Interestingly, chromatographic

purification of <u>8d</u> leads to formation of a second isomer in which the olefinic proton is shifted to higher field [$\delta_{=CH}^{=}$ 6.08 ppm (broad s)] indicating <u>Z</u> geometry. Integration of the ¹H nmr spectrum gives Z:E=82:18. Positions and ⁴J_{HH} couplings of the allylic methyl groups are less helpful in configuration assignment (Table).

Formation of unsaturated thioamides $\underline{8}$ marks the first successful Wittig-Horner olefination employing phosphonates with a β -thioxo group. Attempts to use α -phosphono dithiocarboxylates for C=C bond formation failed probably due to reduced nucleophilicity of the α -position in the anions corresponding to $\underline{6}$ (with SR instead of NHR¹)¹². It should be noted, however, that the use of $\underline{5}$ is also influenced by the nature of the third substituent on the α -carbon as indicated by the failure of the attempted olefinations with $\underline{5c}, \underline{d}$. Obviously, three electron-withdrawing groups on the α -carbon in $\underline{6}$ do not provide the electron density required for attack on the electrophilic aldehydes.

Acknowledgement - We thank the Fonds der Chemischen Industrie , Frankfurt, for support of this work.

References and Notes

- W. Walter and J. Voß, <u>The chemistry of the thioamide group</u>, in J. Zabicky (ed.), <u>The chemistry of the amide group</u>, p. 383, Interscience Publ., London 1970; Y. Tamaru, T. Harada, H. Iwamoto, and Z. Yoshida, <u>J. Am.</u> <u>Chem. Soc.</u> <u>100</u>, 5221 (1978), and references cited therein.
- 2) Y. Tamaru, M. Kagotani, and Z. Yoshida, Tetrahedron Lett. 22, 3409 (1981).
- 3) J. E. Baldwin and W. A. Dupont, <u>Tetrahedron Lett.</u> <u>21</u>, 1881 (1980); G. B. Mpango, K. K. Mahalanabis, Z. Mahdavi-Damghani, and V. Snieckus, <u>ibid.</u>, p. 4823; K. Soai, A. Ookawa, and Y. Nohara, <u>Synth. Commun.</u> <u>13</u>, 27 (1983).
- 4) An exception has been noted recently in the synthesis of a 2-methylene β -thiolactam: A. Commerçon and G. Ponsinet, <u>Tetrahedron Lett.</u> <u>24</u>, 3725 (1983).
- 5) H. Alper, J. K. Currie, and R. Sachdeva, Angew. Chem. <u>90</u>, 722 (1978); Angew. Chem. Int. Ed. Engl. <u>17</u>, 689 (1978).
- 6) H. J. Bestmann and S. Pfohl, <u>Angew. Chem.</u> <u>81</u>, 750 (1969); <u>Angew. Chem.</u> Int. Ed. Engl. <u>8</u>, 762 (1969).
- 7) E. Schaumann and F.-F. Grabley, <u>Chem. Ber.</u> <u>113</u>, 3024 (1980); W.-R. Förster, Ph. D. thesis, Hamburg 1984.
- 8) J. Boutagy and R. Thomas, Chem. Rev. 74, 87 (1974).
- 9) Satisfactory microanalytical results were obtained for the new compounds.
- 10) G. Barnikow and G. Saeling, J. Prakt. Chem. 316, 534 (1974).
- 11) T. H. Kinstle and B. Y. Mandanas, J. Chem. Soc., Chem. Commun. 1968, 1699.
- 12) K. Hartke and W. Hoederath, <u>Sulfur Lett.</u> <u>1</u>, 191 (1983); S. Fittkau, Ph. D. thesis, Hamburg 1983.

(Received in Germany 29 February 1984)